Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.
Answer:
False
Explanation:
that is cohesion. adhesion is force between dissimilar molecules of a body
The crate would slide forward
Answer:
t< 75 nm
Explanation:
A soap bubble is a thin film where when the beam enters the film it has a 180º phase change due to the refractive index and the wavelength changes between
λ = λ₀ / n
In the case of constructive interference in the curve of the spherical film it is
2 nt = (m + ½) λ₀
Where t is the thickness of the film and n the refractive index that does not indicate that we use that of water n = 1.33, m is an integer. The thickness of the film for the first interference (m = 0) is
t = λ₀ / 4 n
A thickness less than this gives destructive interference.
Let's look for the thickness for the visible spectrum
Violet light λ₀ = 400 nm = 400 10⁻⁹ m
t₁ = 400 10⁻⁹ / 4 1.33
t₁ = 75.2 10-9 m
Red light λ₀ = 700 nm = 700 10⁻⁹ m
t₂ = 700 10⁻⁹ / 4 1.33
t₂ = 131.6 10⁻⁹ m
Therefore, for all wavelengths to have destructive interference, the thickness must be less than 75 10⁻⁹ m = 75 nm
b) a film like eta is very thin, it is achieved when gravity thins the pomp, but any movement or burst of air breaks it,
A person is submerged of about 97.9%.
The average density of the human body is given as 979 kg/ m³.
<h3>Define Law of floatation.</h3>
Law of floatation can be defined as the volume of the liquid displaced when a body floats on the liquid surface is equal to the body submerged in the water.
As body has the stable equilibrium state, the buoyancy of the fluid will be equal to the weight.
Weight of the body floating = Weight of the body immersed in fluid
Law of floatation = Density of the floating object / density of fluid
As fluid is the freshwater here, the density of fluid will be 1000 kg/ m³.
= (979 kg/ m³) / ( 1000 kg/ m³)
= 97.9 %
A person is submerged when floating gently in fresh water about 97.9%.
Learn more about law of floatation,
brainly.com/question/17032479
#SPJ4