A) 4.7 cm
The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

where
n is the order of the maximum
is the wavelength
is the distance between the slits
In this problem,
n = 5


So we find

And given the distance of the screen from the slits,

The distance of the 5th bright fringe from the central bright fringe will be given by

B) 8.1 cm
The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

And the distance of the 8th dark fringe from the central bright fringe will be given by

Before you even look at the questions, look over the graph, so you know what kind of information is there.
The x-axis is "time". OK. You know that as the graph moves from left to right, it shows what's happening as time goes on.
The y-axis is "speed" of something. OK. When the graph is high, the thing is moving fast. When the graph is low, the thing is moving slow. When the graph slopes up, the thing is gaining speed. When the graph slopes down, the thing is slowing down. When the graph is flat, the speed isn't changing, so the thing is moving at a constant speed.
NOW you can look at the questions.
OMG ! It's only ONE question: What's happening from 'c' to 'd' ? Well I don't know. Perhaps we can figure it out if we LOOK AT THE GRAPH !
-- Between c and d, the graph is flat. The speed is not changing. It's the same speed at d as it was back at c .
What speed is it ?
-- Look back at the y-axis. The speed at the height of c and d is 'zero' .
-- The 2nd and 4th choices are both correct. From c to d, <em>the speed is constant</em>. The constant speed is zero. <em>The car is not moving</em>.
<span>If you can't measure the parallax that means that the star is far far away, beyond all possible reach of humanity with its current technology. The closer the star is the greater the parallax, so you either get a bigger, more powerful telescope, or you just accept that it's too far away to be measured at all. Eventually the technology will develop enough to measure it.</span>
A) that's not physics, that's chemistry B) assuming you want it balanced, 1,2,1,2