The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered <em>4.9 meters</em>.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Answer:

Explanation:
The heaviside function is defined as:

so we see that the Heaviside function "switches on" when
, and remains switched on when 
If we want our heaviside function to switch on when
, we need the argument to the heaviside function to be 0 when 
Thus we define a function f:

The
term inside the heaviside function makes sure to displace the function 5 units to the right.
Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (
when
, so it becomes just a 1, which we can safely ignore.)
Therefore our final result is:

I have made a sketch for you, and added it as attachment.
As per FBD while its accelerating upwards
we can say that

here normal force is given as


now mass is given as


now we will have


Now while accelerating downwards we can say by FBD

again plug in all values


Answer:
No more information is needed
Explanation:
Radio waves are electromagnetic energy, lower frequency forms of this type of energy that includes light and cosmic rays on the high frequency end that we are able to detect. So in free space (vacuum), radio waves travel at their fastest velocity, the “speed of light”. The reason for the quotation marks is because when light or radio waves are propagating through matter, we observe them traveling more slowly.