Answer:
y = 10.44cos(2t - 0.291) cm
Explanation:
y = Acos(2πt/T + φ) = Acos(2πt/π + φ) = Acos(2t + φ)
v = y' = -2Αsin(2t + φ)
10 = Acos(2(0) + φ) = Acosφ
6 = -2Αsin(2(0) + φ) = -2Asinφ
6/10 = -2Asinφ/Acosφ = -2tanφ
tanφ = -0.3
φ = -0.291 radians
10 = Acos(-0.291)
A = 10/cos(-0.291) = 10.44
<u><em>It's called geothermal energy, and is present due to the incredible amount of heat present in Earth's interior from radioactive decay, friction, and residual heat from Earth's formation.</em></u>
She is sad and feels left out because they are treating her badly. Hope this helps :)
Answer:
v = 3.7 m/s
Explanation:
As the swing starts from rest, if we choose the lowest point of the trajectory to be the zero reference level for gravitational potential energy, and if we neglect air resistance, we can apply energy conservation as follows:
m. g. h = 1/2 m v²
The only unknown (let alone the speed) in the equation , is the height from which the swing is released.
At this point, the ropes make a 30⁰ angle with the vertical, so we can obtain the vertical length at this point as L cos 30⁰, appying simply cos definition.
As the height we are looking for is the difference respect from the vertical length L, we can simply write as follows:
h = L - Lcos 30⁰ = 5m -5m. 0.866 = 4.3 m
Replacing in the energy conservation equation, and solving for v, we get:
v = √2.g.(L-Lcos30⁰) = √2.9.8 m/s². 4.3 m =3.7 m/s
Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands which occur when the plates move apart to produce gaps which molten lava rises to fill.