The liquid nitrogen freezes the balloon and shatters it on contact
Answer:
2.0202 grams
Explanation:
1.4% (m/v) glucose solution means: 1.4g glucose/100mL solution.
so ?g glucose = 144.3 mL soln
Now apply the conversion factor, and you have:
?g glucose = 144.3mL soln x (1.4g glucose/100mL soln).
so you have (144.3x1.4/100) g glucose= 2.0202 grams
The partial stress of H2 is 737.47 mmHg Let's observe the Ideal Gas Law to find out the whole mols.
We count on that the closed vessel has 1L of volume
- P.V=n.R.T
- We must convert mmHg to atm. 760 mmHg.
- 1 atm
- 755 mmHg (755/760) = 0.993 atm
- 0.993 m.1L=n.0.082 L.atm/mol.K .
- 293 K(0.993 atm 1.1L)/(0.082mol.K /L.atm).
- 293K = n
- 0.0413mols = n
These are the whole moles. Now we are able to know the moles of water vapor, to discover the molar fraction of it.
- P.V=n.R.T
- 760 mmHg. 1 atm
- 17.5 mmHg (17.5 mmHg / 760 mmHg)=0.0230 atm
- 0.0230 m.1L=n.0.082 L.atm/mol.K.293 K(0.0230atm.1L)/(0.082mol.K/L.atm .293K)=n 9.58 × 10 ^ 4 mols = n.
- Molar fraction = mols )f gas/general mols.
- Molar fraction water vapor =9.58×10^ -four mols / 0.0413 mols
- Sum of molar fraction =1
- 1 - 9.58 × 10 ^ 4 × mols / 0.0413 ×mols = molar fraction H2
- 0.9767 = molar fraction H2
- H2 pressure / Total pressure =molar fraction H2
- H2 pressure / 55mmHg = =0.9767 0.9767 = h2 pressure =755 mmHg.
- 737,47 mmHg.
<h3>What is a mole fraction?</h3>
Mole fraction is a unit of concentration, described to be identical to the variety of moles of an issue divided through the whole variety of moles of a solution. Because it's miles a ratio, mole fraction is a unitless expression.
Thus it is clear that the partial pressure of H2 is 737,47 mmHg.
To learn more about partial pressure refer to the link :
brainly.com/question/19813237
<h3 />
B) Seawater. Because, it all has the same consistency. With the other choices, like vegetable soup, in one spoon full you may get a bit of potato but in another spoon full you may get a lima bean.
<u>Answer:</u> The temperature of the system will be 1622 K
<u>Explanation:</u>
The equation relating the pre-exponential factor and activation energy follows:

where,
D = diffusion coefficient = 
= pre-exponential constant = 
= activation energy of iron in cobalt = 273,300 J/mol
R = Gas constant = 8.314 J/mol.K
T = temperature = ?
Putting values in above equation, we get:

Hence, the temperature of the system will be 1622 K