The molarity of NaOH needed is calculated as follows
calculate the moles of KhC8h4O4
that is moles = mass/molar mass of KhC8h4O4(204.22 g/mol)
=0.5632g /204.22g/mol= 2.76 x10^-3 moles
write the equation for reaction
khc8h4O4 + NaOH ---> KNaC8h4O4 + H2O
from the equation above the reacting ratio of KhC8h4O4 to NaOh is 1:1 therefore the moles of Naoh is also 2.76 x10^-3 moles
molarity of NaOh = (moles of NaOh / volume ) x 1000
that is { (2.76 x10^-3) / 23.64} x100 =0.117 M
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in
It is reacting as a chemical reaction .
<h3>

</h3><h3>

</h3><h3>

</h3><h3>

</h3>
<em>Hence</em><em>,</em><em> </em><em>84</em><em>°</em><em>F</em><em> </em><em>is</em><em> </em><em>30</em><em>°</em><em>C</em><em> </em><em>in</em><em> </em><em>Celsius</em><em>.</em><em>.</em>
Answer:
MM = 680g / mol
Explanation:
Hello! To calculate the molar mass of the compound (g / mol), I first have to calculate the molarity.
Molarity can be calculated from the osmotic pressure equation.
op = M * R * T
op = osmotic pressure = 28.1mmHg * (1 atm / 760mmHg) = 0.037atm
M = molarity
R = gas constant
T = temperature (K) = 20 ° C + 273.15 = 293.15K
M (mol / L) = op / R * T
M = 0.037atm / ((0.082 (atm * L) / (K * mol)) * 293.15K) = 0.0015mol / L
As I have the volume = 100ml * (1L / 1000ml) = 0.1L
I can calculate the amount of moles
n = M * V = 0.0015 * 0.1 = 0.00015mol
n = m / MM
m = mass
MM = molar mass
MM = m / n = 0.102g / 0.00015mol
MM = 680g / mol