I'm not sure how many sign fig's you are required to have.
However I think the final answer would be 0.05 Moles, because of the .5g, that is considered 1 sign fig.
Answer:
The formation of large molecules from small repeating units is known as <u>Condensation</u> reactions.
Explanation:
Those reactions in which two molecules join together with a elimination of small neutral molecule like H₂O, CH₃OH, HCl e.t.c are known as condensation reactions.
Polymerization reactions are those reactions in which small molecules called as monomers join together to form a large molecule also known as polymers. These reactions are done via different mechanisms among which one is the condensation reaction.
Example:
Proteins (polymer) are made up of amino acids (monomers) through condensation reaction as,
n H₂N-RH-COOH → H₂N-[-RH]n-COOH + n H₂O
In above equation "n" represent large number, H₂N-RH-COOH represent amino acid (monomer) and H₂N-[-RH]n-COOH represent protein (polymer). While, the H₂O eliminated is the small neutral molecule.
Answer:
acid reacts with carbonates to produce salt, water and CO2. CO2 gas causes bubbling during the reaction, which is observed as fizzing.
Calcium bicarbonate - Ca(HCO3)2
sodium peroxide - Na202
water - H20
silver nitrate - AgN03
potassium carbonate - K2CO3
sodium carbonate - Na2CO3
zinc chloride - ZnC12
calcium hydroxide - Ca(OH)2
magnesium chloride - MgC12
Answer:
The final temperature will be close to 20°C
Explanation:
First of all, the resulting temperature of the mix can't be higher than the hot substance's (80°C) or lower than the cold one's (20°C). So options d) and e) are imposible.
Now, due to the high heat capacity of water (4,1813 J/mol*K) it can absorb a huge amount of heat without having a great increment in its temperature. On the other hand, copper have a small heat capacity (0,385 J/mol*K)in comparison.
In conclusion, the copper will release its heat decreasing importantly its temperature and the water will absorb that heat resulting in a small increment of temperature. So the final temperature will be close to 20°C
<u>This analysis can be done because we have equal masses of both substances. </u>