Such high amounts of pressure cause this layer to remain in a _____solid_____ state of matter even though the nickel and iron are at such a high temperature.
Answer:
Number of moles = 0.057 × 10⁻⁷ mol
Explanation:
Given data:
Mass of SiO₂ = 3.4 × 10⁻⁷ g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass of SiO₂ = 60 g/mol
by putting values,
Number of moles = 3.4 × 10⁻⁷ g / 60 g/mol
Number of moles = 0.057 × 10⁻⁷ mol
Answer:
102g
Explanation:
To find the mass of ethanol formed, we first need to ensure that we have a balanced chemical equation. A balanced chemical equation is where the number of atoms of each element is the same on both sides of the equation (reactants and products). This is useful as only when a chemical equation is balanced, we can understand the relationship of the amount (moles) of reactant and products, or to put it simply, their relationship with one another.
In this case, the given equation is already balanced.

From the equation, the amount of ethanol produced is twice the amount of yeast present, or the same amount of carbon dioxide produced. Do note that amount refers to the number of moles here.
Mole= Mass ÷Mr
Mass= Mole ×Mr
<u>Method 1: using the </u><u>mass of glucose</u>
Mr of glucose
= 6(12) +12(1) +6(16)
= 180
Moles of glucose reacted
= 200 ÷180
=
mol
Amount of ethanol formed: moles of glucose reacted= 2: 1
Amount of ethanol
= 
=
mol
Mass of ethanol
= ![\frac{20}{9} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B9%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 
= 102 g (3 s.f.)
<u>Method 2: using </u><u>mass of carbon dioxide</u><u> produced</u>
Mole of carbon dioxide produced
= 97.7 ÷[12 +2(16)]
= 97.7 ÷44
=
mol
Moles of ethanol: moles of carbon dioxide= 1: 1
Moles of ethanol formed=
mol
Mass of ethanol formed
= ![\frac{977}{440} \times[2(12)+6+16]](https://tex.z-dn.net/?f=%5Cfrac%7B977%7D%7B440%7D%20%5Ctimes%5B2%2812%29%2B6%2B16%5D)
= 102 g (3 s.f.)
Thus, 102 g of ethanol are formed.
Additional:
For a similar question on mass and mole ratio, do check out the following!
<u>Answer:</u> The outermost valence electron enters the p orbital.
<u>Explanation:</u>
Valence electrons are defined as the electrons which are present in outer most orbital of an atom.
Sulfur is the 16th element of the periodic table having 16 electrons.
Electronic configuration of sulfur atom is 
The number of valence electrons are 2 + 4 = 6
These 6 electrons enter s-orbital and p-orbital but the outermost valence electron will enter the p-orbital.
Hence, the outermost valence electron enters p orbital.
The color emitted be larger atoms is lower in energy then the light emitted by smaller atoms