Explanation:
As density is defined as the mass of a substance divided by its volume.
Mathematically, Density = 
It is given that mass is 50 g and density is 0.934
.
Hence, calculate the volume of methyl acetate as follows.
Density = 
0.934
= 
Volume = 
or, =
(as 1
= 1 mL)
Thus, we can conclude that the volume of methyl acetate the student should pour out is
.
This is a combination reaction because two molecules becomes one
A + B ---> AB
You should take note that the question is about stability. A compound is stable if it does not easily react with other elements. Hence, its reactivity must be low. As you move down the group, reactivity decreases. So, the halide at the very bottom is the least reactive. It would then be logical that the most stable conjugate base is I⁻ and the least stable conjugate base is the most reactive which is F⁻.
Consider this balanced chemical equation:
2 H2 + O2 → 2 H2O
We interpret this as “two molecules of hydrogen react with one molecule of oxygen to make two molecules of water.” The chemical equation is balanced as long as the coefficients are in the ratio 2:1:2. For instance, this chemical equation is also balanced:
100 H2 + 50 O2 → 100 H2O
This equation is not conventional—because convention says that we use the lowest ratio of coefficients—but it is balanced. So is this chemical equation:
5,000 H2 + 2,500 O2 → 5,000 H2O
Again, this is not conventional, but it is still balanced. Suppose we use a much larger number:
12.044 × 1023 H2 + 6.022 × 1023 O2 → 12.044 × 1023 H2O
These coefficients are also in the ratio of 2:1:2. But these numbers are related to the number of things in a mole: the first and last numbers are two times Avogadro’s number, while the second number is Avogadro’s number. That means that the first and last numbers represent 2 mol, while the middle number is just 1 mol. Well, why not just use the number of moles in balancing the chemical equation?
2 H2 + O2 → 2 H2O
The average kinetic energy of 1 mole of a gas at -32 degrees Celsius is:
3.80 x 103 J
The relationship between volume and temperature of a gas, when pressure and moles of a gas are held constant, is: V*T = k.
FALSE
The relationship between moles and volume, when pressure and temperature of a gas are held constant, is: V/n = k. We could say then, that:
If the moles of gas are tripled, the volume must also triple.
If the temperature and volume of a gas are held constant, an increase in pressure would most likely be caused by an increase in the number of moles of gas.
TRUE
If the vapor pressure of a liquid is less than the atmospheric pressure, the liquid will not boil.
TRUE
35 - AB
36 - BD
33 - true
34 - False
20 - 6
21 - orthohombic