An atom's mass is determined by its protons and neutrons.
An atom's charge is determined by its number of protons minus it number of electrons.
Atoms become cations, or positively charged when they lose an electron, and since electrons have a negative charge, they become anions, or negatively charged.
Water is a universal solvent.
Carbohydrates (carbs) are used by the body for energy.
Steroids and triglycerides are lipids.
Proteins that catalyze chemical reactions are called enzymes.
In order to satisfy charge conservation and lepton number conservation the other products must be neutron.
<h3>
What is conservation of mass?</h3>
The principle of conservation of mass states that, the sum of the initial mass of reactants must be equal to final mass of the products.

The balanced reaction of radioactive decay of phosphorous shows conservation of mass.
Thus, in order to satisfy charge conservation and lepton number conservation the other products must be neutron.
Learn more about radioactive decay here: brainly.com/question/1383030
#SPJ1
Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).