Answer
2.7956 * 10^19 photons
Givens
- Wavelength = λ = 525 * 10^-9 meters [1 nmeter = 1*10^-9 meters]
- c = 3 * 10^8 meters
- E = ???
- W = 100 watts
- t = 1 second
- h= plank's Constant = 6.26 * 10^-34 J*s
Formula
E = h * c / λ
W = E / t
Solution
E = 6.26 * 10^-34 j*s * 3 * 10^8 m/s /525 * 10^-9 (m)
The meters cancel out. So do the seconds. You are left with Joules as you should be.
E = 3.577 * 10^-18 Joules
What you have found is the energy of 1 photon.
Now you have to find the Joules from the watts.
W = E/t
100 * 1 second = 100 joules
1 photon contains 3.577 * 10 ^ - 18 Joules
x photon = 100 joules
1/x = 3.577 * 10^-18 / 100 Cross multiply
100 = 3.577 * 10 ^ - 18 * x Divide both sides by 3.577 * 10 ^ - 18
100/3.577 * 10 ^ - 18 = 3.577 * 10 ^ - 18x / 3.577 * 10 ^ - 18
2.7956 * 10^19 photons = x
Answer:
A solution that is 0.10 M HCN and 0.10 M LiCN
Explanation:
- A good buffer system contains a weak acid and its salt or a weak base and its salt.
- In this case; A solution that is 0.10 M HCN and 0.10 M LiCN, would make a good buffer system.
- HCN is a weak acid, while LiCN is a salt of the weak acid, that is, CN- conjugate of the acid.
Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places
Answer:
Explanation:
A neutral titanium atom will have 22 electrons. Therefore, its electron configuration will be 1s2 2s2 2p6 3s2 3p6 4s2 3d2.