Answer:
Growth rate
Explanation:
The responding variable, also known as the DEPENDENT VARIABLE, is the variable that responds to changes or manipulations made to another variable (independent or manipulable variable) in the experiment. It is the measured variable of an experiment.
According to the hypothesis provided for this investigation, the scientist wants to determine if the amount of fertilizer plants of the same species receive will affect their growth rate when planted in the same condition. This shows that the independent variable is the amount of fertilizer to be used while the RESPONDING VARIABLE OR DEPENDENT VARIABLE is the GROWTH RATE OF THE PLANTS because it responds to the amount of fertilizer.
Answer:
The web page of a university
Explanation:
A scientist can be more biased within coming to information about pretty much anything. I have had multiple science teachers who seem more biased on to something else and pretend that they're right just cause they know what they are doing.
Then the university would be a great choice because its controlled by a higher state, then also the consistency of being updated.
First. moles is just a label for a number of things. just like a
dozen = 12, a gross = 144, a mole = 6022 with another 20 zeros after the
2
next
moles = mass / molecular weight.
molecular weight = sum of atomic mass from the periodic table
atomic mass MnO2 = atomic mass Mn + 2 x atomic mass O
= 54.94 + 2 x 16 = 86.94 g/mole
so moles MnO2 = 98.0 grams / (86.94 g/mole) = 1.13 moles
notice that I only gave 3 digits? that because of sig figs read the link below if you don't understand....
mw C5H12 = 5 x 12 + 12 x 1 = 72 g/mole
so moles C5H12 = 12.0 g / 72.0 g/mole = 0.167 moles
mw XeF6 = 131.3+ 6 x 19.00 = 245.3
so moles XeF6 = 100 g / 245.3 g/mole = 0.4077 moles
I've also provided a link to a periodic table. if you need atomic weights click on any element and it will give you the
details.
Answer:
24.7 amu
Explanation:
An isotope is when an element can have different number of neutrons but they have same number of protons.
In order to calculate the average atomic mass with the given information do the following operations:
First change de percentages to fractional numbers, divide by 100.
I like to make a table, to organize all data and I believe is easier to understand.
65/100 = 0.65
35/100 = 0.35
% fraction
65.0 0.65
35.0 0.35
total100.0 1
Now multiply each mass with their corresponding fraction
24 (0.65) = 15.6
26 (0.35) = 9.1
% fraction uma uma
65.0 0.65 24 15.6
35.0 0.35 26 9.1
total100.0 1 24.7
Finally you add the resulting mass and the units will be in uma.
15.6+9.1 = 24.7
Therefore the average atomic mass of this element will be 24.7 uma.
Check the table in the document attached