The number of moles of gas lost is 0.0213 mol. It can be solved with the help of Ideal gas law.
<h3>What is Ideal law ?</h3>
According to this law, "the volume of a given amount of gas is directly proportional to the number on moles of gas, directly proportional to the temperature and inversely proportional to the pressure. i.e.
PV = nRT.
Where,
- p = pressure
- V = volume (1.75 L = 1.75 x 10⁻³ m³)
- T = absolute temperature
- n = number of moles
- R = gas constant, 8.314 J*(mol-K)
Therefore, the number of moles is
n = PV / RT
State 1 :
- T₁ = (25⁰ C = 25+273 = 298 K)
- p₁ = 225 kPa = 225 x 10³ N/m²
State 2 :
- T₂ = 10 C = 283 K
- p₂ = 185 kPa = 185 x 10³ N/m²
The loss in moles of gas from state 1 to state 2 is
Δn = V/R (P₁/T₁ - P₂/T₂ )
V/R = (1.75 x 10⁻³ m³)/(8.314 (N-m)/(mol-K) = 2.1049 x 10⁻⁴ (mol-m²-K)/N
p₁/T₁ = (225 x 10³)/298 = 755.0336 N/(m²-K)
p₂/T₂ = (185 x 10³)/283 = 653.7102 N/(m²-K)
Therefore,
Δn = (2.1049 x 10⁻⁴ (mol-m²-K)/N)*(755.0336 - 653.7102 N/(m²-K))
= 0.0213 mol
Hence, The number of moles of gas lost is 0.0213 mol.
Learn more about ideal gas here ;
https://brainly.in/question/641453
#SPJ1
As the gas cools it condenses and becomes a liquid its atoms also become smaller
Energy were released from the walnut, q = 1,673.6 J
<h3>Equation :</h3>
To find the energy using formula,
q = mcΔt
where,
q is charge
m is mass
c is specific heat of water
Δt is change in temperature
So, given
t₁ = 50°C
t₂ = 60°C
m = 40g
c = 4.184 J/g
Now putting the values known,
We get,
q = mc(t₂ - t₁)
q = 40g x 4.184 J/g x (60 - 50)
q = 167.36 J x 10
q = 1,673.6 J
<h3>What is heat energy?</h3>
Heat is the thermal energy that is transferred when two systems with different surface temperatures come into contact. Heat is denoted by the letters q or Q and is measured in Joules.
To know more about specific heat :
brainly.com/question/11297584
#SPJ9
Answer:
Limiting reactant: O2
grams NO2 produced = 230.276 g NO2
grams of NO unused = 26.67 gNO
Explanation:
2NO + O2 --> 2NO2
Step 1: Determine the molar ratio NO:O2
molar ratio NO:O2 = 5.895: 2.503 = 2.35
stoichiometric molar ratio NO:O2 = 2:1
So, O2 is the limiting reactant.
Step2: Determine the grams of NO2:
?g NO2 = moles O2 x (2moles NO2/1 mol O2) x (MM NO2/ 1 mol NO2) = 2.503 x 2 x 46 = 230.276 g NO2
Step 3: Determine the amount of excess reagent unreacted
moles excess NO reacted = moles O2 x (2 moles NO/1 mol O2) = 2.503 x 2 = 5.006 moles NO reacted
moles NO unreacted = total moles NO - moles NO reacted = 5.895-5.006 =0.889 moles NO unreacted
mass NO unreacted = moles NO unreacted x MM NO = 0.889 x 30 =26.67 g NO unreacted