In pure water, all of the molecules in the liquid are water molecules so the mole fraction is 1 (100 % H2O, 55 mol/L). In sea water, the concentration of water molecules in the solution is less than that of pure water so the vapor pressure of sea water is also lower.
Answer:
The temperature and pressure below which a supercritical fluid exists.
Explanation:
Critical point is a region on the phase diagram where fluid phases (liquids and gases) have the equal density.
This is caused by increased temperature and pressure of the fluid particles in a confided container. Supercritical fluids exist in a state above critical point.
I hope this explanation was clear.
Answer:
A. Thin
Explanation:
i took the test a while back yw <3
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more:
Answer:
The adaptive (also called humoral or specific) immune system is typically only involved in immune responses to bacteria, bacterial toxins and virus antigens. It involves the production of antibodies (also called immunoglobulins) against a specific target. The target of an antibody is called an antigen.