Answer:
see the pic for the answer
Answer:
9.79740949850 moles
Explanation:
- 1 mole = Avogardo's Number <<6.022 E 23 <<particles, atoms, etc.>>
- This problem can be solved using dimensional analysis by multiplying atoms (5.9E24 atoms) by (1) mole and then dividing the number by Avogardo's number (6.022 E 23 atoms).
- Note: E = * 10
Side Note: Please let me know if you need any clarifications about this!
The true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
<h3>What is true about the given reaction?</h3>
The given reaction shows a reaction between A and B to form CD
The reaction is a reversible reaction.
A reversible reaction is a reaction which can proceed in either of two ways where the reactants can react to form the product and also the products an break down to form the reactants.
In the reaction given, as the concentration of A and b decreases, the concentration of CD increases and vice versa.
At equilibrium, the rate of formation of CD is equal to the the rate of decomposition of CD.
Therefore, the true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
In conclusion, a reaction at equilibrium has the forward and backward reactions occurring at the sane rate.
Learn more about equilibrium reaction at: brainly.com/question/18849238
#SPJ1
The rules of base pairing (or nucleotide pairing) are: A with T: the purine adenine (A) always pairs with the pyrimidine thymine (T) C with G: the pyrimidine cytosine (C) always pairs with the purine guanine (G)
The nucleotides in a base pair are complementary which means their shape allows them to bond together with hydrogen bonds. The A-T pair forms two hydrogen bonds. The C-G pair forms three. The hydrogen bonding between complementary bases holds the two strands of DNA together.
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.