Answer: 0.025 moles of nitrogen gas are there in the sample.
Explanation:
According to ideal gas equation:
P = pressure of gas = 1.03 atm
V = Volume of gas = 568 ml = 0.568 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =
0.025 moles of nitrogen gas are there in the sample.
Answer:
I believe it is D
Explanation:
since Rutherford's explanation, when he made it in 1911, was that scattering was caused by a hard, dense court to centre of the Adam, which is the nucleus and he used Alpha particles to observe the scattered backwards from a gold foil
Answer: Option (B) is the correct answer.
Explanation:
Equilibrium constant is defined as the relationship present between the amounts of products and reactants which are there at equilibrium in a reversible chemical reaction at a given temperature.
For example, 
Mathematically, ![K_{eq} = [C][D]](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5BC%5D%5BD%5D)
As the value of equilibrium constant depends on rate constants of the forward and reverse reactions. And, this rate of reaction also changes with change in pressure and temperature.
Therefore, it will also lead to change in equilibrium constant but it does not depend on initial amount pf reactants.
Thus, we can conclude that in general, the value of the equilibrium constant for a chemical reaction does NOT depend on the initial amounts of reactants present.
Answer:
Na has atomic number 11
which is less than magnesium has atomic number 12
ANSWER IS D
Explanation:
aluminum or Al is atomic 13 and Ca or calcium is atomic number 20 and rubidium or Rb is atomic number 37
Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶