The Rutherford–Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one orbital to another, be proportional to the mathematical square of atomic charge (Z2). Experimental measurement by Henry Moseley of this radiation for many elements (from Z = 13 to 92) showed the results as predicted by Bohr. Both the concept of atomic number and the Bohr model were thereby given scientific credence. The atomic number is the number of _z_ an atom.
Answer:
The temperature is the same overtime.
Explanation:
Since the line on the graph is straight the temperature will be constant.
<u>Answer:</u> The number of moles of weak acid is
moles.
<u>Explanation:</u>
To calculate the moles of KOH, we use the equation:

We are given:
Volume of solution = 43.81 mL = 0.04381 L (Conversion factor: 1L = 1000 mL)
Molarity of the solution = 0.0969 moles/ L
Putting values in above equation, we get:

The chemical reaction of weak monoprotic acid and KOH follows the equation:

By Stoichiometry of the reaction:
1 mole of KOH reacts with 1 mole of weak monoprotic acid.
So,
of KOH will react with =
of weak monoprotic acid.
Hence, the number of moles of weak acid is
moles.
The parent isotope is cobalt-59 (see the picture below).
The mass number is 59 and atomic number is 27 of the parent isotope.
Neutron activation is the process in which atomic nucleus capture free neutron or neutrons.
Cobalt-60 is produced in nuclear reactors in process of neutron activation from parent isotope cobalt-59 (see the picture below).
Atomic number (Z) is total number of protons and mass number (A) is total number of protons and neutrons in a nucleus.
Cobalt-59 and cobalt-60 are the isotopes of chemical element cobalt.
Isotopes are chemical elements with same atomic number (Z), but different mass number (different number of neutrons).
More about isotopes: brainly.com/question/364529
#SPJ4