Answer:
C) The compound is largely ionic with A as the cation.
Explanation:
Pulings proposed the method to determine if the compound is ionic in nature or covalent in nature , by finding the difference between the electronegativity of the respective cation and anion .
The ion with higher electronegativity is the anion and the ion with lower electronegativity is the cation.
The electronegativity difference above 1.7 make the compound ionic in nature.
Hence, from the question ,
A is the cation and B is the anion.
And the electronegativity difference above 1.7 so the compound is ionic in nature.
In particles physics, the weak interaction (the weak force or weak nuclear force) is one of the four known fundamentals interactions of nature, alongside the strong interaction, electromagnetism, and gravitation.
This is based on my research, hope it helped :) <span />
Magnetic separation is a method that uses magnetic force to remove the magnetically sensitive material from a mixture. Because iron is attracted by magnets, this is the ideal method for separating sand and iron fillings.
Magnetism was the physical attribute that allowed this combination to be separated. I used the magnet to separate the iron filing from the sand in the mixture. The magnet attracted the iron filings but not the sand. We were able to separate the iron filings from the sand as a result of this.
Because iron is magnetic while the other two are not, a magnet may be used to pull the iron filings out of the mixture while leaving the salt and sand. Sand is not water-soluble, although salt is. This implies they may be combined in water and swirled together. The salt dissolves, but the sand does not.
Learn more about Magnetic brainly.com/question/3617233
#SPJ9
Answer:
The new molar concentration of CO at equilibrium will be :[CO]=1.16 M.
Explanation:
Equilibrium concentration of all reactant and product:
![[CO_2] = 0.24 M, [H_2] = 0.24 M, [H_2O] = 0.48 M, [CO] = 0.48 M](https://tex.z-dn.net/?f=%5BCO_2%5D%20%3D%200.24%20M%2C%20%5BH_2%5D%20%3D%200.24%20M%2C%20%5BH_2O%5D%20%3D%200.48%20M%2C%20%5BCO%5D%20%3D%200.48%20M)
Equilibrium constant of the reaction :
![K=\frac{[H_2O][CO]}{[CO_2][H_2]}=\frac{0.48 M\times 0.48 M}{0.24 M\times 0.24 M}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BCO_2%5D%5BH_2%5D%7D%3D%5Cfrac%7B0.48%20M%5Ctimes%200.48%20M%7D%7B0.24%20M%5Ctimes%200.24%20M%7D)
K = 4

Concentration at eq'm:
0.24 M 0.24 M 0.48 M 0.48 M
After addition of 0.34 moles per liter of
and
are added.
(0.24+0.34) M (0.24+0.34) M (0.48+x)M (0.48+x)M
Equilibrium constant of the reaction after addition of more carbon dioxide and water:


Solving for x: x = 0.68
The new molar concentration of CO at equilibrium will be:
[CO]= (0.48+x)M = (0.48+0.68 )M = 1.16 M
Answer:
7.38 g/cm³ is the density of the metal
Explanation:
In a Face-centered cubic unit cell you have 4 atoms. Also, the edge length is √8×r (r is radius of the atom).
To solve this problem, we need first to calculate the volume of the unit cell and then, with molar mass calculate the mass of 4 atoms. As density is the ratio between mass and volume we can obtain this value.
- <em>Volume of the unit cell</em>
Volume = a³
a = √8×r
(r = 198x10⁻¹²m)
a = 5.6x10⁻¹⁰ m
Volume = 1.756x10⁻²⁸ m³
1m = 100cm → 1m³ = (100cm)³:
1.756x10⁻²⁸ m³× ((100cm)³ / 1m³) =
<h3> 1.756x10⁻²² cm³ → Volume of the unit cell in cm³</h3><h3 />
- <em>Mass of the unit cell:</em>
<em>There are 4 atoms of gold:</em>
4 atoms × (1mol / 6.022x10²³ atoms) = 6.64x10⁻²⁴ moles of gold
As 1 mole weighs 195.08g:
6.64x10⁻²⁴ moles of gold × (195.08g / mol) =
<h3>1.296x10⁻²¹g is the mass of the unit cell</h3><h3 />
- <em>Density of the metal:</em>
1.296x10⁻²¹g / 1.756x10⁻²² cm³ =
<h3>7.38 g/cm³ is the density of the metal</h3>