Answer: D. A wave with a shorter wavelength is always faster than one with a longer wavelength
Explanation: "Imagine two sets of waves that have the same speed. <u><em>If one set has a longer wavelength, it will have a lower frequency (more time between waves). If the other set has a shorter wavelength, it will have a higher frequency</em></u> (less time between waves). Light moves even faster AND has shorter wavelengths."
Why it's not C: "The number of complete wavelengths in a given unit of time is called frequency (f). <em><u>As a wavelength increases in size, its frequency and energy (E) decrease</u></em>. From these equations you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer."
Why it's not B: "The frequency does not change as the sound wave moves from one medium to another. Since the speed changes and the frequency does not, the wavelength must change."
Why it's not A: "Do loud sounds travel faster than soft sounds? No. Both travel at the same speed The speed depends on the medium it passes through. Louder sounds are simply sound waves with higher amplitude traveling at the same speed."
Answer:
Zero
Explanation:
The work done on an object is given by:

where
F is the force applied on the object
d is the displacement of the object
is the angle between the direction of the force and the displacement
In this problem, you are pushing again a stationary wall: this means that the walls does not move. As a result, the displacement is zero: d=0. Therefore, the work done is also zero: W=0.
Answer:
the direction that should be walked by Ricardo to go directly to Jane is 23.52 m, 24° east of south
Explanation:
given information:
Ricardo walks 27.0 m in a direction 60.0 ∘ west of north, thus
A= 27
Ax = 27 sin 60 = - 23.4
Ay = 27 cos 60 = 13.5
Jane walks 16.0 m in a direction 30.0 ∘ south of west, so
B = 16
Bx = 16 cos 30 = -13.9
By = 16 sin 30 = -8
the direction that should be walked by Ricardo to go directly to Jane
R = √A²+B² - (2ABcos60)
= √27²+16² - (2(27)(16)(cos 60))
= 23.52 m
now we can use the sines law to find the angle
tan θ = 
= By - Ay/Bx -Ax
= (-8 - 13.5)/(-13.9 - (-23.4))
θ = 90 - (-8 - 13.5)/(-13.9 - (-23.4))
= 24° east of south
Answer:The goal of the lab was to collect and transfer data including the tennis ball, football, and other objects.
Explanation: Edgenuity kid