Answer:
Step-by-step explanation:
The quadrilateral has 4 sides and only two of them are equal.
A) to find PR, we will consider the triangle, PRQ.
Using cosine rule
a^2 = b^2 + c^2 - 2abcos A
We are looking for PR
PR^2 = 8^2 + 7^2 - 2 ×8 × 7Cos70
PR^2 = 64 + 49 - 112 × 0.3420
PR^2 = 113 - 38.304 = 74.696
PR = √74.696 = 8.64
B) to find the perimeter of PQRS, we will consider the triangle, RSP. It is an isosceles triangle. Therefore, two sides and two base angles are equal. To determine the length of SP,
We will use the sine rule because only one side,PR is known
For sine rule,
a/sinA = b/sinB
SP/ sin 35 = 8.64/sin110
Cross multiplying
SPsin110 = 8.64sin35
SP = 8.64sin35/sin110
SP = (8.64 × 0.5736)/0.9397
SP = 5.27
SR = SP = 5.27
The perimeter of the quadrilateral PQRS is the sum of the sides. The perimeter = 8 + 7 + 5.27 + 5.27 = 25.54 cm
Answer:
a trapezoid
Step-by-step explanation:
A trapezoid is a convex quadrilateral. A trapezoid has at least on pair of parallel sides. the parallel sides are called bases while the non parallel sides are called legs
Characteristics of a trapezoid
It has 4 vertices and edges
If both pairs of its opposite sides of a trapezoid are parallel, it becomes a parallelogram
Area of a trapezoid = x (sum of the lengths of the parallel sides) x height
Perimeter = sum of lengths of sides of a trapezoid
BD is 18
XY is 4
IK is 8
DF is 16
The surface area of a box with length L, width W, and height H is given by: box wi

From the problem, we identify:

Then, using the formula: