Answer:
VB − VA = g tAB & (VA + VB)/2 = h / tAB
Explanation:
s = h = Displacement
tAB = t = Time taken
VA = u = Initial velocity
VB = v = Final velocity
a = g = Acceleration due to gravity = 9.8 m/s²




Hence, the equations VB − VA = g tAB & (VA + VB)/2 = h / tAB will be used
- The work done is -30 J
- The heat is 25 J
<h3>What is the heat and the work?</h3>
We know that the work done by a gas could be positive or negative same as the heat. If the work done is positive then work is done on the system.
The work done is obtained from;
W = PΔV
W = 1.0 x 105 Pa(0.0006 m³ - 0.0003 m³)
W = 30 J
Given that the gas absorbs heat from the surroundings and the gas is expanding.
- The work done is -30 J
- The heat is 25 J
Learn more about work done on a gas:brainly.com/question/12539457
#SPJ1
Answer:
76.1N
Explanation:
Given parameters:
Mass of the ball = 7.77kg
Unknow:
Weight of balloon = ?
Solution:
Weight is the vertical force applied on a body.
Weight = mass x acceleration due gravity
So;
Weight = mass x acceleration due to gravity
So;
Weight = 7.77 x 9.8 = 76.1N
<span>In my opinion, I myself believe that there are only two supernovae. The first is the white dwarf. It makes sense because if something is too big for its size, it will "explode". Just like a basketball with too much air. Massive star supernovae is like something has reached it's full potential and cannot get any bigger or better.</span>
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.