Around 80 percent of the mass of the universe is made up material known as "Dark matter". It does not emit light or energy but the influence of it can be detected or observed gravitationally. Motions of stars and galaxy tell us how much mater there is, but somehow the speed of rotation of galaxy does not add up to its mass alone, there is a certain amount of matter really not accounted for. Dark matter maybe made up of non-baryonic matter, or perhaps what scientist called the WIMPS or (weakly interacting massive particles.)
Current in the wire = 2 A
Explanation:
the magnetic field is given by
B= \frac{\mu i}{2\pi r}
μo= 4π x 10⁻⁷ Tm/A
i= current
r=0.02 m
B = magnetic field= 2 x 10⁻⁵ T
2 x 10⁻⁵= (4π x 10⁻⁷)(i) / (2π*0.02)
i=2 A
Based on the options given, the most likely answer to this query is B) The temperature must be converted to Kelvin. Meaning, the temperature should be in SI unit.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
The momentum of block B after the collision is -50 kg m/s.
Explanation:
We can solve this problem by using the principle of conservation of momentum. In fact, the total momentum of the system before and after the collision must be conserved, so we can write:

where:
is the momentum of block A before the collision
is the momentum of block B before the collision
is the momentum of block A after the collision
is the momentum of block B after the collision
Solving for
, we find:

So, the momentum of block B after the collision is -50 kg m/s.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly