The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²
<h3>
Magnetic dipole moment of the bar magnet</h3>
The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

where;
- B is magnetic field
- m is dipole moment
- μ is permeability of free space
m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)
m = 1.2 Am²
The complete question is below:
What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.
Learn more about dipole moment here: brainly.com/question/27590192
#SPJ11
Answer:
The answer to your question is 784.8 J. None of your answer, did you forget some information?
Explanation:
Data
mass = 20 kg
distance = 4 m
work = ?
Formula
Work = force x distance
Force = mass x gravity
Process
1.- Calculate the weight of the block
Weight = 20 x 9.81
Weight = 196.2 N
2.- Calculate the work done
Work = 196.2 x 4
Work = 784.8 J
Answer:
The value is 
Explanation:
From the question we are told that
The initial pressure is
The initial temperature is ![T_1 = 50 \ F = (50 - 32) * [\frac{5}{9} ] + 273 = 283 \ K](https://tex.z-dn.net/?f=T_1%20%3D%20%2050%20%5C%20F%20%3D%20%2850%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D%20283%20%20%5C%20%20K)
The final temperature is ![T_2 = 320 \ F = (320 - 32) * [\frac{5}{9} ] + 273 =433 \ K](https://tex.z-dn.net/?f=T_2%20%3D%20%20320%20%5C%20F%20%3D%20%28320%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D433%20%20%5C%20%20K)
Generally the equation for adiabatic process is mathematically represented as

=> 
Generally for a monoatomic gas 
So
![14 * 283^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} } =P_2 * 433^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} }](https://tex.z-dn.net/?f=14%20%2A%20283%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D%20%3DP_2%20%2A%20433%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D)
=> 
=> 
Answer:
W = 8.01 × 10^(-17) [J]
Explanation:
To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:
W = q*V
where:
q = charge = 1,602 × 10^(-19) [C]
V = voltage = 500 [V]
W = work [J]
W = 1,602 × 10^(-19) * 500
W = 8.01 × 10^(-17) [J]