Answer:
A) At point 1, local acceleration = 0.5 m/s²
At point 2, local acceleration = 1.0 m/s²
B) Average Eulerian convective acceleration over the two points in the cross section shown = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Explanation:
Local acceleration at those points is the instantaneous acceleration at those points and it is given as
a = dv/dt
At point 1, v₁ = 0.5 t
a₁ =dv₁/dt = 0.5 m/s²
At point 2, v₂ = 1.0 t
a₂ = dv₂/dt = 1.0 m/s²
b) Average Eulerian convective acceleration over the two points in the cross section shown = (change of velocity between the two points)/time
Change of velocity between the two points = v₂ - v₁ = 1.0t - 0.5t = 0.5 t
Time = t
Average acceleration = 0.5t/t = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Answer:
He should stand from the center of laser pointed on the wall at 1.3 m.
Explanation:
Given that,
Wave length = 650 nm
Distance =10 m
Double slit separation d = 5 μm
We need to find the position of fringe
Using formula of distance



Put the value into the formula


Hence, He should stand from the center of laser pointed on the wall at 1.3 m.
Distance between the two cars is increasing at the rate of 85 mph.
A passenger in Car-1 says that he is at rest in his own frame of reference,
and Car-2 is moving away from him at 85 mph, toward the west.