1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zvonat [6]
2 years ago
13

What is the quotient of 5/6+2/7 A. 35/12 B. 52/42 C. 7/13 D. 5/21​

Mathematics
2 answers:
BlackZzzverrR [31]2 years ago
4 0
Answer is A. 35/12

Step by step.
Quotient is division.
5/6 divided by 2/7 = x
To divide fractions, flip one and multiply.
5/6 x 7/2 = 35/12
So your answer is A. 35/12.
blagie [28]2 years ago
4 0

Answer:

nwz go p da u dq0a in w02jz9wjw

You might be interested in
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
3 years ago
consider a polynomial f(x)=ax^3 + bx^2 + x + 2/3.if x + 3 is a factor of f(x) and f(x) is divided by x + 2, then we get remainde
Elanso [62]

Answer:

a = 2/27

b = 13/27

Step-by-step explanation:

The given polynomial is presented as follows;

f(x) = a·x³ + b·x² + x + 2/3

Given that x + 3 is a factor, we have;

f(-3) = 0 = a·(-3)³ + b·(-3)² - 3 +2/3 = 0

-27·a + 9·b - 3 + 2/3 = 0

-27·a + 9·b = 7/3........(1)

Also we have

(a·x³ + b·x² + x + 2/3) ÷ (x + 2) the remainder = 5

Therefore;

a·(-2)³ + b·(-2)² + (-2) + 2/3 = 5

-8·a + 4·b - 2 + 2/3 = 5

-8·a + 4·b = 2 - 2/3 = 4/3........(2)

Multiplying equation (1) by 4/9 and subtracting it from equation (2), we have;

-8·a + 4·b - 4/9×(-27·a + 9·b) = 4/3 - 4/9 × 7/3

-8·a + 12·a = 8/27

4·a = 8/27

a = 2/27 ≈ 0.0741

imputing the a value in equation (1) gives;

-27×2/27 + 9·b = 7/3

-2 + 9·b = 7/3

9·b = 7/3 + 2 = 13/3

b = 13/27 ≈ 0.481.

6 0
3 years ago
Please help ( the function table)
Norma-Jean [14]
Hope this will help

8 0
3 years ago
If f(x)=8x and g(x)=2x+1, what is (f×g)(x)
Sav [38]

Answer:

(f * g)(x) has a final product of 16x² + 8x.

Step-by-step explanation:

When you see (f * g)(x), this means that we are going to be multiply f(x) and g(x) together.

<em>f(x)=8x</em>

<em>g(x)=2x+1</em>

Now, we multiply these terms together.

(8x)(2x + 1)

Use the foil method to multiply.

16x² + 8x

So, the product of these terms is 16x² + 8x.

5 0
3 years ago
NEED HELP FAST!!! Match each graph with the description of the trend it shows. positive linear trend, negative linear trend, exp
otez555 [7]
A is no observable trend, B is a positive linear trend, C is a negative linear trend, and D is an exponential trend
5 0
3 years ago
Read 2 more answers
Other questions:
  • Tony's Pizza made 52 pizzas today. If each pizza contains 12 slices, estimate how many slices of pizza Tony's Pizza Place made b
    13·2 answers
  • 5g - 2 When g Is 3 What Is The correct answer To this Varieties question?
    10·1 answer
  • Which expression is equal to a•a•a•a•b•b
    11·2 answers
  • Valentina purchased 200 beads for $48 to make necklaces. If she needs to buy 25 more beads, how much would she pay if she is cha
    10·1 answer
  • tom and sonia both mowed lawns ladt week. Tom mowed five lawns and charged $10.75 per lawn. Sonia mowed four lawns but charged $
    8·2 answers
  • Which linear equation describes the line passing through point (10,3) and has a y-intercept at (0,-1)?
    9·1 answer
  • Factorise x^2 + 9x + 20
    5·1 answer
  • Write 3.848484848484... as a mixed number in simplest form.
    11·1 answer
  • Solve for each variable x &amp; y.
    7·2 answers
  • How many solutions are there for this equation?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!