Answer:
When one system vibrating at its natural frequency is put closer to a stationary system, the stationary system receives impulses.
At resonant frequency, the system vibrating at its own natural frequency suddenly goes on decreasing in order to cope with neighboring system.
These decrease in frequency is known as damping.
Answer:
The Stefan–Boltzmann constant (also Stefan's constant), a physical constant denoted by the Greek letter σ (sigma), is the constant of proportionality in the Stefan–Boltzmann law: "the total intensity radiated over all wavelengths increases as the temperature increases", of a black body which is proportional to the ...
Answer:
The work done is 0.
Explanation:
The reason no work is done is because the equation W = Fs.
W = work
F= force
s= displacement
In this scenario F = 50 and s= 0
Therefore.
W = 50(0)
W = 0
Answer:

Explanation:
The moment of inertia of the system is equal to the each population and the platform inertia so
Inertia disk

Inertia person

Inertia dog

The Inertia of the system is the sum of each mass taking into account that all exert the force of inertia:



Answer:
E = 0.01 J
Explanation:
Given that,
The mass of the cart, m = 0.15 kg
The force constant of the spring, k = 3.58 N/m
The amplitude of the oscillations, A = 7.5 cm = 0.075 m
We need to find the total mechanical energy of the system. It can be given by the formula as follows :

Put all the values,

So, the value of total mechanical energy is equal to 0.01 J.