Answer:

Explanation:
The rotational kinetic energy when the cylinder is with the rope is:

where we used the fact that both rope and cylinder hast the same w. This E_k must conserve, that is, E_k must equal E_k when the rope leaves the cylinder. Hence, the final w is given by:
(1)
For Ic and Ir we can assume that the rope is a ring of the same radius of the cylinder. Then, we have:

Finally, by replacing in (1):

hope this helps!!
<em>★</em><em> </em><em>«</em><em> </em><em><u>what is sound wave and examples</u></em><em><u> </u></em><em>»</em><em> </em><em>★</em>
- <em>A sound wave is the pattern of disturbance caused by the movement of energy traveling through a medium (such as air, water, or any other liquid or solid matter) as it propagates away from the source of the sound. The source is some object that causes a vibration, such as a ringing telephone, or a person's vocal chords.</em>
<em>hope </em><em>it</em><em> helps</em>
Answer:
The magnitude of the induced voltage in the loop is 20 mV.
Explanation:
given;
length of loop, L = 0.43 m
width of loop,w = 0.43 m
velocity of moved loop, v = 0.15m/s
magnetic field strength,B = 0.31 T
To determine the magnitude of the induced voltage in the loop, we apply Faraday's law;
magnitude induced E.M.F = BLv
magnitude induced E.M.F = 0.31 x 0.43 x 0.15 = 0.02 V = 20 mV
Therefore, the magnitude of the induced voltage in the loop is 20 mV.
Answer:42.4m/s^2
Explanation:
Velocity(v)=6m/s
Radius(r)=0.85 meter
Centripetal acceleration=(v x v) ➗ r
Centripetal acceleration=(6 x 6) ➗ 0.85
Centripetal acceleration=36 ➗ 0.85
Centripetal acceleration=42.4