Solving this using the time, we know that range = horizontal velocity x time of flight
since
there are no horizontal forces acting on the ball, there are no
horizontal accelerations and the initial horizontal velocity of 36 cos
28 will be constant throughout. If we use the correct time of flight given the launch parameters, we have
range = 36 cos 28 x 3.44 s = 109.3 m
Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
Positive charge=proton
Negative charge=electron
No charge/neutral=neutron