C decreased the factor cuz the max is smaller
Answer:
More extreme weather.
Explanation:
The Conveyor Belt of tides functions on a local and global level to spread out the cold and hot temperature differences on the planet. It is a delicate but important process that is easily disrupted, which causes it to slow down. And when it slows down, all those temperature differences will become more concentrated, causing colder places to be colder and hotter places to be hotter, ultimately leading to more extreme weather events as these cold and hot spots collide more violently than before.
Here's a picture I found on it:
Remember, half of the energy in an EM wave is in the E field, the rest is in the B field.
Thus, multiply E field energy by 2.
To calculate the energy of the wave you must then use the following equation: W = A*t*c*2*(1/2*E^2*Eo). Where, A = Area, t = time, c = speed of light (which is a constant), E = Electric field, E0 = vacuum permittivity (8.85*10^-12 Nm^2/C^2). Substituting W =(0.320)*(26)*(3*10^8)*(2)*((1/2)*(1.95*10^-2)^2*(8.854*10^-12)) = 8.40*10^-6 J
Answer:
30
Explanation:
Assuming the velocity is 3π radians <em>per second</em>, the top will spin through an angle of ...
(3π radians/s)(20 s) = 60π radians
Since each revolution is 2π radians, that is ...
(60π radians)/(2π radians/revolution) = 30 revolutions
Answer:
Answer to the question is: 1837.65 millimeters of mercury are equal to 245 kPa.
Explanation:
1 kPa are equal to 7.50062 millimeters of mercury.