Answer:
3.42N
Explanation:
*not too sure bc i left my physics notes at school so it might not be 100% accurate :p*
Use the equation: F = (GMm)/(r^2)
F = force of gravity
G = gravitational constant (6.7x10^-11)
M = mass1 (2.5x10^30kg)
m = mass2 (1kg)
r = radius (7000m)
Plug it in: F = ((6.7x10^-11)(2.5x10^30)(1)) / (7000^2)
F = (1.675x10^20) / (4.9x10^7)
F = 3.4183673x10^12
F = 3.42N
Using formula:
I=(1/2)*M*(R^2+r^2)
<span>I=0.5*0.715kg*[(12.7cm)^2+(10.7cm)^2] </span>
<span>I=98.6 kg*cm^2</span>
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
Answer:
The free body diagram is attached.
Explanation:
A force of 31[N] to the east, the second force goes to the south and it is equal to 28[N], the third force goes to the west and it is equal to 39 [N].
We can consider the crate as a particle. And all the forces are acting over the particle.
Answer:
The mass of G1 at all times during this trial was <u>0.5</u> kg.
The velocity of G1 + G2 after the collision was <u>-1.24</u> m/s.
The momentum of G1 after the collision was <u>-2.10</u> kg · m/s.
Explanation:
i got it right