Answer:

Step-by-step explanation:
Let
x ---> the number of years
y ---> the amount in the account balance
Plan A
we have a linear equation of the form

where
The slope is equal to

The y-intercept or initial value is

substitute

For x=10 years
substitute

Plan B
we have a exponential growth function of the form

where

substitute


For x=10 years
substitute

Find the difference of the two account balances after 10 years

F(t) = P.e^(r.t) [ and not as you wrote it f(t)+Pe^rt]
plug in:
f(t) = 8.e^(0.08t) (where e = 2.718 and t=8 given, f(8))
f(8) = 8.(2.718)^(0.08*8) = 21.74^(0.64)
f(8) = 7.17
Answer: 1 < x < 25
<u>Step-by-step explanation:</u>
The sum of two sides must be GREATER than the third side.
a + b > c a + c > b b + c > a
12 + 13 > x 12 + x > 13 13 + x > 12
25 > x x > 1 x > -1
x < 25 1 < x
Length cannot be negative so disregard x > -1
We are left with 1 < x and x < 25
1 < x < 25
well, this is just a matter of simple unit conversion, so let's recall that one revolution on a circle is just one-go-around, radians wise that'll be 2π, and we also know that 1 minute has 60 seconds, let's use those values for our product.
![\cfrac{300~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{2\pi ~rad}{~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{60secs}\implies \cfrac{(300)(2\pi )rad}{60secs}\implies 10\pi ~\frac{rad}{secs}\approx 31.42~\frac{rad}{secs}](https://tex.z-dn.net/?f=%5Ccfrac%7B300~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B2%5Cpi%20~rad%7D%7B~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B60secs%7D%5Cimplies%20%5Ccfrac%7B%28300%29%282%5Cpi%20%29rad%7D%7B60secs%7D%5Cimplies%2010%5Cpi%20~%5Cfrac%7Brad%7D%7Bsecs%7D%5Capprox%2031.42~%5Cfrac%7Brad%7D%7Bsecs%7D)
Step-by-step explanation:
You're asking why

let's transpose the first equation for y
-2x-6y=18
-6y=18+2x
6y=-18-2x
y=-18/6-2x/6
y=-3-⅓x as required