Answer:
Work, W = F * d, and
Work = change in kinetic energy, so W=deltaKE.
Hence,
deltaKE=F * d
(1/2)*m*v^2 =F * d
d=[(1/2)*m*v^2]/F
d=[(1/2)*0.6*20^2]/5
d=24 m.
Explanation:
Work = change in kinetic energy, so W=deltaKE.
Answer:
Explanation:
The pressure of a liquid is the rate of the force applied by the liquid on a surface per unit area of the surface.
i.e P = 
where P is the pressure, F is the force and A is the area.
The depth of the liquid determines its pressure at a definite lower point. As the pressure of a liquid at the bottom of a its container is greater than the pressure at the top of the liquid.
Thus,
P = σhg
where P is the pressure, σ is the density of the liquid, h is the height and g is the force of gravity.
It is measured in Pascals or N
.
The pressure of liquid has a lot of applications, viz: siphon, force pump, lift pump etc.
Answer: 90.1 s
Explanation:
Use equation for power:
P=F*V
Use eqation for force:
F=ma
F---force
V---velocity
Vr=om/s
V=30m/s
m=1000kg
P=10000W
---------------------------
P=FV
F=P/V
F=10000W/30m/s
F=333.33N
Use equation for force to find accelartaion.
F=ma
a=F/m
a=333.33N/1000kg
a=0.333 m/s²
Use equation for accelaration to find out time:
a=(V-Vs)/t
t=(V-Vs)/a
t=(30m/s)/(0.333m/s²)
t=90.09 s≈90.1 s
------------------------
From my notes it’s the ability to do work
Answer with explanation:
The Normalization Principle states that

Given
Thus solving the integral we get

The integral shall be solved using chain rule initially and finally we shall apply the limits as shown below

Applying the limits and solving for A we get
![I=\frac{1}{k}[\frac{1}{e^{kx}}-\frac{x}{e^{kx}}]_{0}^{+\infty }\\\\I=-\frac{1}{k}\\\\\therefore A=-k](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B1%7D%7Bk%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bkx%7D%7D-%5Cfrac%7Bx%7D%7Be%5E%7Bkx%7D%7D%5D_%7B0%7D%5E%7B%2B%5Cinfty%20%7D%5C%5C%5C%5CI%3D-%5Cfrac%7B1%7D%7Bk%7D%5C%5C%5C%5C%5Ctherefore%20A%3D-k)