Explanation:
a converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a temperature of 360 K. For isentropic flow of an ideal gas with k = 1.4 and the gas constant R = Ru/MW = 287 J/kg-K, determine the mass flow rate in kg/s and the exit Mach number for back pressures
100% (3 ratings)
A_2 = 0.001 m^2 P_1 = 1 MPa, T_1 = 360 k P_2 = 500 kpa p^gamma - 1/gamma proportional T (1000/500)^1.4 - 1/1.4 = (360/T_2) 2^4/14 = 360/T_2 T_2
Engineering is the technical
Answer:
HB = 3.22
Explanation:
The formula to calculate the Brinell Hardness is given as follows:

where,
HB = Brinell Hardness = ?
P = Applied Load in kg = 500 kg
D = Diameter of Indenter in mm = 10 mm
d = Diameter of the indentation in mm = 1.55 mm
Therefore, using these values, we get:

<u>HB = 3.22 </u>
Answer:
1 its 1 bc you have to do it step by step
Explanation:
step by step
Answer:
a. 5m
b. r = 0.16 e^-80.5◦
c. Zpn = (115.7 + j27.4) ohms
d. Vi = 2.2e^-j22.56◦ volts
e. Vi(t) = 2.2 cos (8π × 107t − 22.56◦ ) Volts
Explanation:
In this question, we are tasked with calculating a series of terms.
Please check attachment for complete solution and step by step explanation