Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K
Answer:
a) V =10¹¹*(1.5q₁ + 3q₂)
b) U = 1.34*10¹¹q₁q₂
Explanation:
Given
x₁ = 6 cm
y₁ = 0 cm
x₂ = 0 cm
y₂ = 3 cm
q₁ = unknown value in Coulomb
q₂ = unknown value in Coulomb
A) V₁ = Kq₁/r₁
where r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m
V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁
V₂ = Kq₂/r₂
where r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m
V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂
The electric potential due to the two charges at the origin is
V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)
B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows
U = Kq₁q₂/r₁₂
where
r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m
then
U = 9*10⁹q₁q₂/(3√5/100)
⇒ U = 1.34*10¹¹q₁q₂
ANSWERS:
Explanation:
Given:
Piston cylinder assembly which mean that the process is constant pressure process P=C.
<u>AMMONIA </u>
state(1)
saturated vapor
The temperature
Isothermal process
a)
( double)
b)
(reduced by half)
To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.
state(1)
using PVT data for saturated ammonia
then the state exists in the supper heated region.
a) from standard data
assume linear interpolation
b)
from standard data
then the state exist in the wet zone
Answer: The force exerted on the dough.
Explanation:
The force is responsible for stimulating the stress.
Recall that:
stress= Tensile force/area.