Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Explanation:
Styrene is a vinyl monomer in which there is a carbon carbon double bond.
The polymerization of the styrene, which is initiated by using a free radical which reacts with the styrene and the compound thus forms react again and again to form polystyrene (PS).
The equation is shown below as:
⇒ ![\begin{matrix}&C_6H_5 \\&|\\ -[-H_2C & -CH-]-_n\end{matrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bmatrix%7D%26C_6H_5%20%5C%5C%26%7C%5C%5C%20-%5B-H_2C%20%26%20-CH-%5D-_n%5Cend%7Bmatrix%7D)
Answer:
155fts
Explanation:
We apply the bernoulli's equation to get the depth of water.
We have the following information
P1 = pressure at top water surface = 0
V1 = velocity at too water surface = 0
X1 = height of water surface = h
Hf = friction loss = 0
P2 = pressure at exit = 0
V2 = velocity at exit if penstock = 100ft/s
X2 = height of penstock = 0
g = acceleration due to gravity = 32.2ft/s²
Applying these values to the equation
0 + 0 + h = 0 + v2²/2g +0 + 0
= h = 100²/2x32.2
= 10000/64.4
= 155.28ft
= 155