Answer:
please find the answer in the attached images , in 2 parts, btw thanks for so many points. i hope my answers are correct.
The answers are B, C, E and F.
Atoms from an element is mostly made of protons, neutrons, and electrons. Proton numbers are like a class number for each element. Each element has their own and they're all different. And the number of protons are equal to the number of electrons. Therefore, B is correct.
Isotopes. It's different atoms from a same element that has the same number of protons but different number of neutrons. For example in hydrogen, there's 3 Isotopes for hydrogen. Therefore, C is correct.
Again, proton for the same element is never changed, even if they're different Isotopes. So, E is correct.
Isotopes, again, different elements may have different Isotopes. Some has only 1, others may have a few or more. So, F is correct too.
Answer: 0.013 seconds
Explanation:
Given that
Mass of golf ball = 0.058 kg
Force = 272 N
Velocity = 62.0 m/s
Time taken = ?
Recall that force is the rate of change of momentum per unit time
i.e Force = Change in momentum / Time
i.e Force = (Mass x velocity) / Time
272N = (0.058 kg x 62.0 m/s) / Time
272N = 3.6kgm/s / Time
Time = (3.6kgm/s / 272N)
Time = 0.013 seconds
Thus, the ball was in contact with the club for 0.013 seconds
Let original length be L. The new length is therefore 4L.
Let original cross sectional surface area of the wire be equal to πr^2.
This means original volume was L x πr^2 = Lπr^2
The volume is the same but the length is different so 4L x new surface area must be equal to Lπr^2. Let new surface area be equal to Y.
4L x Y = Lπr^2
=> Y = (πr^2 )/ 4
Using the resistivity formula,
R = pL/A. p which is resistivity is a constant so it stays the same
But this time, instead of L we have 4L and instead of πr^2 we have (πr^2)/4.
so the new resistance
= (4Lp)/ {(πr^2)/4}
= 16 (pL)/(πr^2)
= 16 (pL)/A. because πr^2 is A
since pL/A is equal to R from the formula, this is equal to
16 R.
R was 10 ohms
therefore new resistance is 16 x 10 = 160 ohms
Answer:
south
im not sure with this answer