Answer:
6.93 km/h
Explanation:
To calculate her average speed, we need the "speed" formula, which is:
average speed = distance / time
You plug in your numbers and it will give you the answer.
Speed = 4.5km/0.65hr
= 6.923 km/h
The figure shown above is series combination as the two resistors (bulb) are there which are then connected to the battery
so i conclude from the above options given the option is B
hope it helps
Answer:
East component is: 18.64 m/s
Explanation:
If the resultant is 32.5 m/s directed 35 degrees east of north, then we use the sin(35) projection to find the east component of the velocity:
East component = 32.5 m/s * sin(35) = 18.64 m/s
The appropriate expression for the calculation of power by relating the angular energy in a given time.
In other words the instantaneous power of an angular accelerating body is the torque times the angular velocity

Where
Torque
Angular speed
Our values are given by


The angular velocity must be transformed into radians per second then


Replacing,



The average power delivered by the engine at this rotation rate is 211.1kW
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.