Answer:
a) The answer is 11,7m
b) The time it takes to fall will be shorter
Explanation:
We will use the next semi-parabolic movement equations
Where g(gravity acceleration)=9,81m/s^2
Also Xi, Hi and Viy are zero, as the stones Billy-Jones is kicking stay still before he moves them, so we take that point as the reference point
The first we must do is to find how much time the stones take to fall, this way:
Then t=1,54s
After that we need to replace t to find H, this way
Then H=11,7m
b) The stones will fall faster as the stones will be kicked harder, it will cause the stones move faster, it means, more horizontal velocity. In order to see it better we could assume the actual velocity is two times more than it is, so it will give us half of the time, this way:
Then, t=0,77
Halogens therefore react most vigorously with Group 1 and Group 2 metals of all main group elements.
If you're referring to the different colors that usually occur at the tip of missles, rockets and some other aircraft, it either a) signifies the end of a particular plate of metal, fabricated specifically to be for the nose. Sometimes these can even be a different alloy or metal all together. or b) this shows where the curved surface begins, so in the case of damage or imperfections due to wear, they can be repaired and measured more easily. The shape of the nose is extremely important for smooth flight, and a dent or bump formed on it can make the aircraft unstable. If you can measure from where the curve starts by the difference in color, it makes repairing or re-fabricating the part much easier. Many of these curves aren't as simple as they appear.
Answer:
The work done by a particle from x = 0 to x = 2 m is 20 J.
Explanation:
A force on a particle depends on position constrained to move along the x-axis, is given by,

We need to find the work done on a particle that moves from x = 0.00 m to x = 2.00 m.
We know that the work done by a particle is given by the formula as follows :


So, the work done by a particle from x = 0 to x = 2 m is 20 J. Hence, this is the required solution.
By definition, Ampere is a unit of current which is a measure of the amount of charge passing through a point in a circuit per unit of time, with an equivalent charge of 1.602 x 10^(-19) Coulomb per electron. To determine the number of electrons passing through the heater, we use the definition of the current. We calculate as follows:
13.5 A = 13.5 C per second
Charge = 13.5 C/s (10 min) ( 60 s / 1 min)
Charge = 8100 C
Number of electrons = 8100 C / 1.602 x 10^(-19) C per electron
Number of electrons = 5.1 x 10^22 electrons
Therefore, there are 5.1 x10^22 electrons that assed through the heater for 10 minutes.