You must observe the object twice.
-- Look at it the first time, and make a mark where it is.
-- After some time has passed, look at the object again, and
make another mark at the place where it is.
-- At your convenience, take out your ruler, and measure the
distance between the two marks.
What you'll have is the object's "displacement" during that period
of time ... the distance between the start-point and end-point.
Technically, you won't know the actual distance it has traveled
during that time, because you don't know the route it took.
Answer:
Energy
Explanation:
When an object vibrates, it creates kinetic energy that is transmitted by molecules in the medium. As the vibrating sound wave comes in contact with air particles passes its kinetic energy to nearby molecules. As these energized molecules begin to move, they energize other molecules that repeat the process.
I’m pretty sure it is an object with a net force of zero. All forces are balanced and EQUAL
Kinetic energy and potential energy pair is the quantity in which one will increase then other will decrease
As we know that sum of kinetic energy and potential energy will always remain conserved
So here we will have

so here as we move away from mean position the kinetic energy will decrease while at the same time potential energy will increase.
So the pair of potential energy and kinetic energy will satisfy the above condition
High pressure
Low oxygen
Darkness