Answer:
<em><u>In direct-current circuit theory, Norton's theorem is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.</u></em>
Answer:
T2=336K
Explanation:
Clausius-Clapeyron equation is used to determine the vapour pressure at different temperatures:
where:
In(P2/P1) = ΔvapH/R(1/T1 - 1/T2)
p1 and p2 are the vapour pressures at temperatures
T1 and T2
ΔvapH = the enthalpy of vaporization of the liquid
R = the Universal Gas Constant
p1=p1, T1=307K
p2=3.50p1; T2=?
ΔvapH=37.51kJ/mol=37510J/mol
R=8.314J.K^-1moL^-1
In(3.50P1/P1)= (37510J/mol)/(8.314J.K^-1)*(1/307 - 1/T2)
P1 and P1 cancelled out:
In(3.50)=4511.667(T2 - 307/307T2)
1.253=14.696(T2 - 307/T2)
1.253=(14.696T2) - (14.696*307)/T2
1.253T2=14.696T2 - 4511.672
Therefore,
4511.672=14.696T2 - 1.253T2
4511.672=13.443T2
So therefore, T2=4511.672/13.443=335.61
Approximately, T2=336K
The magnitude is 13.12 mV.
The steps are attached below.
<h3>How do you find the magnitude of an induced emf?</h3>
The standard SI unit of the magnetic field is the tesla (T). As an end result, we can use these equations and the equation for an induced emf due to changes in magnetic flux, ϵ=−NΔϕΔt ϵ = − N Δ ϕ Δ t, to calculate the importance of a precipitated emf in a solenoid.
The magnitude of the precipitated contemporary depends on the rate of trade of magnetic flux or the fee of reducing the magnetic area strains.
Learn more about the magnitude here: brainly.com/question/18109453
#SPJ2
Answer:
Approximately 18 volts when the magnetic field strength increases from
to
at a constant rate.
Explanation:
By the Faraday's Law of Induction, the EMF
that a changing magnetic flux induces in a coil is:
,
where
is the number of turns in the coil, and
is the rate of change in magnetic flux through this coil.
However, for a coil the magnetic flux
is equal to
,
where
is the magnetic field strength at the coil, and
is the area of the coil perpendicular to the magnetic field.
For this coil, the magnetic field is perpendicular to coil, so
and
. The area of this circular coil is equal to
.
doesn't change, so the rate of change in the magnetic flux
through the coil depends only on the rate of change in the magnetic field strength
. The size of the magnetic field at the instant that
will not matter as long as the rate of change in
is constant.
.
As a result,
.
En la medicina y la biotecnología, los sensores son herramientas que detectan procesos biológicos, químicos, o físicos y luego transmiten o reportan esta información. Algunos sensores trabajan fuera del cuerpo, mientras que otros están diseñados para ser implantados dentro del cuerpo.
Algunos dispositivos de monitoreo constan de múltiples sensores que miden una serie de parámetros físicos o biológicos. Otros dispositivos pueden ser multifuncionales, incorporando sensores y luego suministrando un fármaco o intervención en base a la información obtenida de los sensores. Los sensores pueden ser también componentes en sistemas que procesan muestras clínicas, tales como los dispositivos cada vez más comunes conocidos como “lab-on-a-chip”.
Los sensores ayudan a los proveedores del cuidado de la salud y a los pacientes a monitorear las condiciones de la salud y asegurar que puedan tomar decisiones informadas sobre el tratamiento. Los sensores también se utilizan a menudo para monitorear la seguridad de los medicamentos, los alimentos, las condiciones ambientales, y otras sustancias que podríamos encontrar.