<span>inclined plane formula is length/hight
so 5/2= 2.5
and work= f x d so
work= 5 x 104 x 10= 5200 W
</span>
Answer:
The spring was compressed the following amount:

Explanation:
Use conservation of energy between initial and final state, considering that the surface id frictionless, and there is no loss in thermal energy due to friction. the total initial energy is the potential energy of the compressed spring (by an amount
), and the total final energy is the addition of the kinetic energies of both masses:



Any force can affect the momentum of an object
if it changes the object's speed.
Answer:
3.33 Joules Per Second
Explanation:
Before finding the Power, we need to calculate the Work Done. The Work Done can be calculated using the formula:
WD = F × d
where F is the Magnitude of Force in <em>N</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>d is the Parallel Distance moved by the object in <em>m</em><em>.</em>
Hence, by Applying this formula, we get:
WD = (5)(20)
= 100 J
From here calculating Power is simple as it is the Rate of Work Done. Hence,
Power = 100/30
= <u>3</u><u>.</u><u>3</u><u>3</u><u> </u><u>J</u><u>/</u><u>s</u>
Therefore, the power put out is <u>3</u><u>.</u><u>3</u><u>3</u><u> </u><u>J</u><u>o</u><u>u</u><u>l</u><u>e</u><u>s</u><u> </u><u>p</u><u>e</u><u>r</u><u> </u><u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u>.</u>