It is highly helpful to know that the mechanical advantage (M.A.) of Class two levers is usually greater than one. It is because the overall length of the Effort Arm is higher than the overall length of Load Arm. It is easily known by MA is effort arm/load arm.
!! ⬇️
The mechanical advantage of a lever of the second order is always greater than one because its effort arm is always longer than the load arm i.e. Effort arm > Load arm.
Second class lever has mechanical advantage always more than one as load is in between fulcrum and effort making the effort arm longer than the load arm.
First Class Lever -- the effort and the load on either side of the fulcrum. Some examples would be a crowbar or a seesaw. The effort is only less than the load if the load is closer to the fulcrum. The lever then acts as a force magnifier and the mechanical advantage is greater than one.
Energy stored= Li^2/2
Therefore L=2(E.S)/i^2
= 0.0013
Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed is
at a distance of 
The final speed is
at a distance of 
Generally from the kinematic equation we have that

=> 
=> 
=> 
The negative sign shows that it is decelerating
Answer:

Explanation:
The magnitude of the magnetic field on the axis of the ring is given by:

is the permeability of free space,
is the flowing current through the ring,
is the ring's radius and
is the distance to the center of the ring.
The flowing current through the ring is defined as the ring's charge divided into the time taken by the charge to complete one revolution, that is, the period
. So, we have:

Now, replacing in (1):
