Answer:
No, it is not enthalpy favored since the chemical system gains energy.
Explanation:
The dissolution of ammonium nitrate in water is an endothermic process.
Endothermic process requires the system to gain energy to can dissolve the particles in water.
So, the reaction is not enthalpy favored.
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer:
I believe it's the lowest portion of the atmosphere
Answer:
The correct answer is no.
Explanation:
Tellurium is a chemical element denoted by Te and having atomic number 52. It is mildly toxic, brittle, silver-white, and rare metalloid. The element is chemically related to sulfur and selenium, all three of which are chalcogens.
Oxygen is a chemical element, that is, a substance, which comprises only one kind of atom. Its official chemical symbol is O and exhibits an atomic number 8, this signifies that an atom of oxygen possesses eight protons in its nucleus. In the given question, it is not likely that tellurium would replace for oxygen, as the two elements are highly unlike.
<span>H2CO3 <---> H+ + HCO3-
NaHCO3 <---> Na+ + HCO3-
When acid is added in the buffer, the excess H+ of that acid reacts with HCO3- to form H2CO3, and due to this NaHCO3 dissociates into HCO3- to attain the equilibrium. and hence there is no net effect of H+ due to pH remain almost constant.
when a base is added to the buffer, the OH- ion of base react eith H+ ion present in buffer, then to attain equilibrium of H+ ion, the H2CO3 dissociates to produce H+ ion, but now there is the excess of HCO3- due to which Na+ ion react with them to attain equilibrium of HCO3-. hence there is again no net change in H+ ion due to which pH remain constant.....</span>