The grams that would be produced from 7.70 g of butanoic acid and excess ethanol is 7.923grams
calculation
Step 1: write the chemical equation for the reaction
CH3CH2CH2COOH + CH3CH2OH → CH3CH2CH2COOCH2CH3 +H2O
step 2: find the moles of butanoic acid
moles= mass/ molar mass
= 7.70 g/ 88 g/mol=0.0875 moles
Step 3: use the mole ratio to determine the moles of ethyl butyrate
moles ratio of CH3CH2CH2COOH :CH3CH2CH2COOCH2CH3 is 1:1 therefore the moles of CH3CH2CH2COOCH2CH3 = 0.0875 x78/100=0.0683moles
step 4: find mass = moles x molar mass
= 0.0683 moles x116 g/mol=7.923grams
Answer:
Step 1) hydrolysis using NaOH/H2O to form benzylalcohol
Step2) oxidation to Carboxylic acid using KMnO4 followed by decarboxylation to form benzene
3) friedel craft acylation using CH3COCl/AlCl3
Explanation:
The above 3 steps will yield acetophenone from methylbenzoate
To find the concentration of hydronium ions, take 10 raised to the negative pH:
10^-9.56= 2.75 x10^-10M
To find the concentration of hydroxide ions, take 10 raised to the negative pOH: 10^-4.44 = 3.63 x10^-5M
Producers are the foundation of every food web in every ecosystem—they occupy what is called the first tropic level of the food web. The second trophic level consists of primary consumers—the herbivores, or animals that eat plants. At the top level are secondary consumers—the carnivores and omnivores who eat the primary consumers. Ultimately, decomposers break down dead organisms, returning vital nutrients to the soil, and restarting the cycle. Another name for producers is autotrophs, which means “self-nourishers.” There are two kinds of autotrophs. The most common are photoautotrophs—producers that carry out photosynthesis. Trees, grasses, and shrubs are the most important terrestrial photoautotrophs. In most aquatic ecosystems, including lakes and oceans, algae are the most important photoautotrophs.