Carbon Dating would tell you the age of the charcoal
Always remember that pH + pOH = 14
Here, you have a pOH of 11.24, so you replace it in the equation, and u get:
pH + 11.24 = 14
Then, You move 11.24 to the other part. and moving from a part to another change the sign of the equation. And you get:
pH = 14 - 11.24 = 2.76
So, the pH of a solution that has a pOH of 11.24 is pH = 2.76
Hope this Helps :)
<span><em>Answer:</em>
A strontium-90 atom that has a lost two electrons has <u>38</u> protons, <u>52</u> neutrons, and <u>36</u> electrons.
<em>Explanation:
</em>Atomic number<em> of </em>Strontium (Sr) is 38.
<em>Atomic number = number of protons
</em>Hence, Strontium has 38 protons.
If the element is in neutral state,
number of protons = number of electrons.
Then, neutral Strontium atom should have 38 electrons.
But the question says Sr has lost 2 electrons. Hence, number of electrons should be 38 - 2 = 36.
Mass number = number of protons + number of neutrons.
The given mass number is 90. Hence, number of neutrons should be 90 - 38 = 52.</span>
Answer:
The elastic potential energy stored in the stretched rubber band changes to kinetic energy.
Explanation:
Joshua hooks a rubber band between his thumb and forefinger. He moves his fingers apart, stretching the rubber band---- Here potential Energy is stored which is an energy that the rubber band has because of its position and it's potential to be converted into kinetic energy.
With a quick, sudden motion, he bends his thumb forward so that the rubber band slips off----The elastic potential energy stored in the stretched rubber band will change to kinetic energy, which is the Energy in Motion and work needed to accelerate the rubber band from rest to its stated or new position.
Answer:
The standard cell potential of the reaction is 0.78 Volts.
Explanation:

Reduction at cathode :
Reduction potential of
to Cu=
Oxidation at anode:

Reduction potential of
to Fe=
To calculate the
of the reaction, we use the equation:

Putting values in above equation, we get:

The standard cell potential of the reaction is 0.78 Volts.