Answer:
i. Keq=4157.99.
ii. More hydrogen sulfide will be produced.
Explanation:
Hello,
i. In this case, for the concentrations at equilibrium on the given chemical reaction, the equilibrium constant results:
![Keq=\frac{[H_2S]^2}{[H_2]^2[S_2]} =\frac{(0.97M)^2}{(0.051M)^2(0.087)} =4157.99](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5BS_2%5D%7D%20%3D%5Cfrac%7B%280.97M%29%5E2%7D%7B%280.051M%29%5E2%280.087%29%7D%20%3D4157.99)
ii. Now, by means of the Le Chatelier's principle, the addition of a reactant shifts the reaction towards products, it means that more hydrogen sulfide will be produced in order to reach equilibrium.
Best regards.
In a sample liquid water, a property that differs among the
water molecules is its own orientation and space. The explanation of the answer
to the question is because the number of the oxygen and hydrogen atoms and the
hydrogen and atoms’ arrangement will never change and will always be the same
for each of the water molecule. The strength of the bond of it also does not
change and stays the same.
<h3>
Answer: Si (choice D)</h3>
This is the element Silicon.
=========================================================
Explanation:
First convert each percentage to its decimal form.
For example, 92.2297% converts to 0.922297 after moving the decimal point two spots to the left.
After doing that, multiply those decimal values with their respective atomic mass unit (amu) values.
- 27.9769 * 0.922297 = 25.8030109393
- 28.9765 * 0.046832 = 1.357027448
- 29.9738 * 0.030872 = 0.9253511536
Then we add up the results
25.8030109393 + 1.357027448 + 0.9253511536 = 28.0853895409
That rounds to about 28.085
Then look at the periodic table to see the atomic mass of Cobalt (Co), Aluminum (Al), Nickel (Ni) and Silicon (Si). The mass values listed in the periodic table are weighted averages of all the isotopes. The units for the mass are still in amu.
- Cobalt = 58.933
- Aluminum = 26.982
- Nickel = 58.693
- Silicon = 28.085
We have a match with silicon, showing that <u>choice D</u> is the final answer.