Answer:
There was an improvement in accuracy. There was no change in precision.
Explanation:
<em>The average mass after recalibration is closer to the mass of the standard, </em>so the recalibration improved the accuracy<em> </em>(the measurement is closer to an accepted 'true' value).
The standard deviation did not change, so the precision (or how disperse the measurements are) was not affected.
Answer:
Enantiomers/ Isomers/ Stereoisomers/ Meso compounds/ Constitutional isomers/ Diastereomers.
Explanation:
Isomers are molecules that have the same chemical formula but have different conformation, or in its connections, or the orientation in space. Isomers have different chemical and physical properties (second blank).
The isomers that only differ by the orientation of their atoms in space are called stereoisomers (third blank).
The stereoisomers that have a chiral carbon and do not mirror images of each are called enantiomers (first blank). They can deviate the polarized light.
When a compound has two or more chiral carbons but they compensate for the deviation of the light, and the compound is optically inactive, it's called a meso compound (fourth blank).
When the isomers differ in the way the atoms are connected it's called a constitutional isomer (fifth blank).
When the molecule has more than one chiral carbon, it will have pairs of enantiomers. The isomers that aren't of the same pair are nonsuperimposable mirror images of each other and are called diastereomers (last blank).
Answer:
The melting point range of a substance is the temperature range from which the first crystal starts to melt, to the temperature at which the last crystal finishes melting. An impure substance is a type of mixture, so melting points can be used to find out if a substance is pure or impure.
pls mark brainiest
Explanation:
Dehydrogenation is catalyzed by Cu, Mo and Fe by changing their oxidation states.