Answer:
the last one
Explanation:
Because it is a magnifying glass, it magnifies the object and makes it bigger than it appears
<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
<h3><u>Question</u><u>:</u></h3>
A racing car is travelling at 70 m/s and accelerates at -14 m/s^2. What would the car’s speed be after 3 s?
<h3><u>Statement:</u></h3>
A racing car is travelling at 70 m/s and accelerates at -14 m/s^2.
<h3><u>Solution</u><u>:</u></h3>
- Initial velocity (u) = 70 m/s
- Acceleration (a) = -14 m/s^2
- Time (t) = 3 s
- Let the velocity of the car after 3 s be v m/s
- By using the formula,
v = u + at, we have

- So, the velocity of the car after 3 s is 28 m/s.
<h3><u>Answer:</u></h3>
The car's speed after 3 s is 28 m/s.
Hope it helps
Answer:
42.58kg
Explanation:
By Newton's second law, F = ma.
F is the force being applied, in this case 112N. a is the acceleration, in this case 2.63 m/s^2.
Thus, with some simple algebraic manipulation, we get the mass to equal:
m = F/a = 112N / 2.63 m/s^2 = 42.58kg