Answer:
negative particles
Explanation:
An atom can be defined as the smallest unit comprising of matter that forms all chemical elements. Thus, atoms are basically the building blocks of matters and as such defines the structure of a chemical element.
Generally, these atoms are typically made up of three distinct particles and these are protons, neutrons and electrons.
In Chemistry, electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.
Valence electrons can be defined as the number of electrons present in the outermost shell of an atom. Valence electrons are used to determine whether an atom or group of elements found in a periodic table can bond with others. Thus, this property is typically used to determine the chemical properties of elements.
Hence, an object is most likely to become electrically charged by gaining or losing negative particles.
Answer:
The tension on an object is equal to the mass of the object x gravitational force plus/minus the mass x acceleration. T = mg + ma.
Explanation:
If the gravitational force were<span> decreased by half, there would be lack of gravity on earth. Hence, it would basically affect the velocity, speed, and the distance travelled in any direction by basketball players and the ball. The basketball would bounce higher and come down in a slower speed. Whereas for the players, they would be able to leap higher from the floor.</span><span> </span>
Answer:
Radio waves have a wavelength between
and 
While,
X rays have a wavelength between 1m and 10km.
=> It is one of the condition of diffraction that the obstacle (coming in the way) must be comparable with the size of the wavelength.
=> This shows, that radio waves have a wavelength which is comparable with the size of buildings and can really easily diffract through it
=> While, X-rays are big enough to diffract through the wall.
So, if an X-ray technician stands behind a wall during the use of her machine, she will remain safe.
Answer:
The magnet produces an electric current in the wire
Explanation: