Answer:
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Explanation:
This is an angular kinematic exercise the equation for the angular position
the particle A
θ = θ₀ + ω₀ t + ½ α t²
They say for the particle B
w₀B = ½ w₀
αB = 2 α
In addition, the particle begins at a time t_1 after particle A, in order to use the same timer, we must subtract this time from the initial
t´ = t - t_1
l
et's write the equation of particle B
θ = θ₀ + w₀B t´ + ½ αB t´2
replace
θ = θ₀ + ½ w₀ (t -t_1) + ½ 2α (t -t_1)²
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
In a cell, protein synthesis is the primary function of the ribosomes, found in both eukaryotic and prokaryotic cells.
A Ribosome is a cell organelle that makes protein. The location of the ribosome in a cell determine the kind of protein it makes. If the ribosome is attached to the endoplasmic reticulum, the proteins made are utilized both within and outside the cell. If the ribosome is in the cytoplasm, floating freely, then the kind of protein made will be utilized within the cell only.
Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time