I believe it’d have a higher resistance because if it had a lower resistance more electrons could travel threw it
Answer:
0.056 miles away
Explanation:
From sound wave,
v = 2x/t .................................. Equation 1
Where v = velocity of sound in air, x = distance of echo, t = time.
making x the subject of the equation,
x = 2v/t........................... Equation 2.
Given: v = 344 m/s, t = 7.6 s.
Substituting into equation 2
x = 2(344)/7.6
x = 90.53 m.
x = 90.53/1609.344
x = 0.056 mile.
Thus the lighting strike 0.056 miles away
1. Which example best describes a restoring force?
B) the force applied to restore a spring to its original length
2. A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released?
C) The spring exerts a restoring force to the left and returns to its equilibrium position.
3. A 2-N force is applied to a spring, and there is displacement of 0.4 m. How much would the spring be displaced if a 5-N force was applied?
D) 1 m
4. Hooke’s law is described mathematically using the formula Fsp=−kx. Which statement is correct about the spring force, Fsp?
D)It is a vector quantity.
5. What happens to the displacement vector when the spring constant has a higher value and the applied force remains constant?
A) It decreases in magnatude.
The energy changes involved when a positive charge moves because of a nearby, negatively charged object because that is actually similar to when an object falls in a gravitational field, the potential energy of the object will turn in to a kinetic energy. thank you for this question.
Answer:
1.65 m
Explanation:
Energy from spring,
is given by
where k is spring constant and x is the compression distance


Kinetic energy, KE at the highest point is given by
where m is mass and v is velocity
KE=0.5*0.0227*2.27= 0.058485 J
Potential energy, PE of spring is given by
PE=mgh where g is gravitational constant and h is maximum height reached by the mouse
PE=0.0227*9.81= 0.222687h
According to the principle of conservation of energy, the potential energy of the compressed spring is equal to the potential and kinetic energy of the mouse at the maximum high point.

0.425=0.222687h+0.058485
h=(0.425-0.058485)/ 0.222687=1.646671 m
h=1.65 m