Hey there!:
Molar mass Lead ( Pb ) = 207.2 g/mol
Therefore:
1 mole Pb --------------------- 6.02*10²³ atoms
? moles Pb -------------------- 2.31*10²¹ atoms
moles Pb = ( 2.31*10²¹ ) * 1 / ( 6.02*10²³ ) =
moles Pb = ( 2.31*10²¹ ) / ( 6.02*10²³ ) =
=> 0.00383 moles of Pb
Hope this helps !
Answer:
The correct answer would be - observing with the help of five senses.
Explanation:
To find and describe the physical properties of the given substance or the solution or liquid students can observe using their five senses. By looking at the liquid one can find its state and color, by smelling students can find the odor of the sample, by touching it one can observe and describe the texture.
Fluidity can also be measure by the touch if the solution is viscous or free-floating. By using a thermometer and using a graduated cylinder one can find the temperature at room temperature and the weight of substance respectively.
The question is incomplete. Complete question is:
<span>Consider the given acid ionization constants. identify the strongest conjugate base.
</span>HNO2(aq) 4.6×10−4
HCHO2(aq) 1.8×10−4
HClO(aq) 2.9×10−8
HCN(aq) 4.9×10−10
.........................................................................................................................
Correct Answer: option
4: HCN(aq) 4.9×10−10
Reason:
According to Lowry and Bronsted theory of acid and base. Stronger the acid, weaker will be the conjugate base.
In present case, ionization constant is highest of HCN i.e. 4.9×

. This signifies that, it is the strongest acid. Hence, conjugate base associated with this acid (i.e.

) is the weakest.
Answer:

Explanation:
We are given that 25 mL of 0.10 M
is titrated with 0.10 M NaOH(aq).
We have to find the pH of solution
Volume of 
Volume of NaoH=0.01 L
Volume of solution =25 +10=35 mL=
Because 1 L=1000 mL
Molarity of NaOH=Concentration OH-=0.10M
Concentration of H+= Molarity of
=0.10 M
Number of moles of H+=Molarity multiply by volume of given acid
Number of moles of H+=
=0.0025 moles
Number of moles of
=0.001mole
Number of moles of H+ remaining after adding 10 mL base = 0.0025-0.001=0.0015 moles
Concentration of H+=
pH=-log [H+]=-log [4.28
]=-log4.28+2 log 10=-0.631+2
