For an element whose third shell contains six electrons, the appropriate electron configuration is; 1s2 2s2 2p6 3s2 3p4.
The electron configuration shows the distribution of electrons in the shells of an atom and in orbitals.
We have been told that the six electrons are found in the third shell. This shell has n=3 and the configuration of this shell must ns2 np4.
The only electron configuration that meets this standard is 1s2 2s2 2p6 3s2 3p4.
Learn more: brainly.com/question/18704022
Answer:
see notes below
Explanation:
The mole is the mass of substance containing 1 Avogadro's Number of particles. That is, 1 mole substance = 1 formula weight. For elements, 1 mole weight is equal to the atomic weight expressed as grams. For molecules, 1 mole weight is equal to the molecular weight expressed as grams.
1 mole = 1 formula weight
<u>Moles to Grams and Grams to Moles</u>
Grams => Moles
Given grams, moles = mass given / formula weight
*Ask the question => How many formula weights are there in the given mass? => Results is always moles.
Moles => Grams
Given moles, grams = moles given X formula weight
*Summary
Grams to Moles => divide by formula weight
Moles to Grams => multiply by formula weight
<span>Sublimation: the substance changes directly from a solid to a gas without going through the liquid phase. Deposition: the substance changes directly from a gas to a solid without going through the liquid phase.</span>
Answer:
13 mol NO
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of O₂ to NO is 5:4.
Step 3: Calculate the number of moles of O₂ needed to produce 16 moles of NO
We will use the previously established molar ratio.
16 mol O₂ × 4 mol NO/5 mol O₂ = 13 mol NO